The effect of UV-photofunctionalization on the time-related bioactivity of titanium and chromium-cobalt alloys.
نویسندگان
چکیده
This study examined the possible changes in the bioactivity of titanium surfaces during their aging and investigated the effect of ultraviolet (UV) light treatment during the age-related change of titanium bioactivity. Rat bone marrow-derived osteoblastic cells were cultured on new titanium disks (immediately after either acid-etching, machining, or sandblasting), 4-week-old disks (stored after processing for 4 weeks in dark ambient conditions), and 4-week-old disks treated with UVA (peak wavelength of 365 nm) or UVC (peak wavelength of 250 nm). During incubation for 24 h, only 50% of the cells were attached to the 4-week-old surfaces as compared to the new surface. UVC treatment of the aged surface increased its cell attachment capacity to a level 50% higher than the new surfaces, whereas UVA treatment had no effect. Proliferation, alkaline phosphatase activity, and mineralization of cells were substantially lower on the 4-week-old surfaces than on the new surfaces, while they were higher on the UVC-treated 4-week-old surfaces as compared to the new surfaces. The age-related impaired bioactivity was found on all titanium topographies as well as on a chromium-cobalt alloy, and was associated with an increased percentage of surface carbon. Although both UVA and UVC treatment converted the 4-week-old titanium surfaces from hydrophobic to superhydrophilic, only UVC treatment effectively reduced the surface carbon to a level equivalent to the new surface. Thus, this study uncovered a time-dependent biological degradation of titanium and chromium-cobalt alloy, and its restoration enabled by UVC phototreatment, which surmounts the innate bioactivity of new surfaces, which is more closely linked to hydrocarbon removal than the induced superhydrophilicity.
منابع مشابه
Effect of UV-Photofunctionalization on Bioactivity of Titanium to Promote Human Mesenchymal Stem Cells
Background and Aim: The present study introduces photofunctionalization as a technique for tackling biological aging and increasing the bioactivity of titanium. This in-vitro study evaluated the effects of ultraviolet (UVC) light treatment of titanium surfaces with different time-related changes on the behavior and function of human mesenchymal stem cells (MSCs). Materials and Methods: MSCs we...
متن کاملTiO2 micro-nano-hybrid surface to alleviate biological aging of UV-photofunctionalized titanium
Bioactivity and osteoconductivity of titanium degrade over time after surface processing. This time-dependent degradation is substantial and defined as the biological aging of titanium. UV treatment has shown to reactivate the aged surfaces, a process known as photofunctionalization. This study determined whether there is a difference in the behavior of biological aging for titanium with micro-...
متن کاملA review of the requirements and hazards of toxic metals from orthodontic wires
Background: Orthodontics is a part of dentistry that includes preventive methods and correction of dental irregularities that need to be repositioned by functional and mechanical tools to provide an ideal occlusion and a beautiful face for patients. There are currently four metal arch wires used in orthodontic treatment: stainless steel alloy, cobalt-chromium alloy, nickel-titanium alloy, and b...
متن کاملImprovement of Cr-Co-Mo Membrane Surface Used as Barrier for Bone Regeneration through UV Photofunctionalization: An In Vitro Study
Although there are several studies of the ultraviolet (UV) light-mediated photofunctionalization of titanium for use as implant material, the underlying mechanism is not fully understood. However, the results of in vitro and in vivo studies are very encouraging. The use of UV photofunctionalization as a surface treatment on other implant materials, as the Cr-Co-Mo alloy, has not been explored i...
متن کاملBiofunctionalization strategies on tantalum-based materials for osseointegrative applications
The use of tantalum as biomaterial for orthopedic applications is gaining considerable attention in the clinical practice because it presents an excellent chemical stability, body fluid resistance, biocompatibility, and it is more osteoconductive than titanium or cobalt-chromium alloys. Nonetheless, metallic biomaterials are commonly bioinert and may not provide fast and long-lasting interactio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 30 26 شماره
صفحات -
تاریخ انتشار 2009